skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Herron, Lukas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Phase transitions are ubiquitous across life, yet hard to quantify and describe accurately. In this work, we develop an approach for characterizing generic attributes of phase transitions from very limited observations made deep within different phases’ domains of stability. Our approach is called thermodynamic maps (TM), which combines statistical mechanics and molecular simulations with score-based generative models. TM enable learning the temperature dependence of arbitrary thermodynamic observables across a wide range of temperatures. We show its usefulness by calculating phase transition attributes such as melting temperature, temperature-dependent heat capacities, and critical exponents. For instance, we demonstrate the ability of TM to infer the ferromagnetic phase transition of the Ising model, including temperature-dependent heat capacity and critical exponents, despite never having seen samples from the transition region. In addition, we efficiently characterize the temperature-dependent conformational ensemble and compute melting curves of the two RNA systems: a GCAA tetraloop and the HIV-TAR RNA, which are notoriously hard to sample due to glassy-like energy landscapes. 
    more » « less
    Free, publicly-accessible full text available December 24, 2025
  2. Using simulations or experiments performed at some set of temperatures to learn about the physics or chemistry at some other arbitrary temperature is a problem of immense practical and theoretical relevance. Here we develop a framework based on statistical mechanics and generative artificial intelligence that allows solving this problem. Specifically, we work with denoising diffusion probabilistic models and show how these models in combination with replica exchange molecular dynamics achieve superior sampling of the biomolecular energy landscape at temperatures that were never simulated without assuming any particular slow degrees of freedom. The key idea is to treat the temperature as a fluctuating random variable and not a control parameter as is usually done. This allows us to directly sample from the joint probability distribution in configuration and temperature space. The results here are demonstrated for a chirally symmetric peptide and single-strand RNA undergoing conformational transitions in all-atom water. We demonstrate how we can discover transition states and metastable states that were previously unseen at the temperature of interest and even bypass the need to perform further simulations for a wide range of temperatures. At the same time, any unphysical states are easily identifiable through very low Boltzmann weights. The procedure while shown here for a class of molecular simulations should be more generally applicable to mixing information across simulations and experiments with varying control parameters. 
    more » « less
  3. We report the molecular recognition properties of Pillar[ n ]MaxQ (P[ n ]MQ) toward a series of (methylated) amino acids, amino acid amides, and post-translationally modified peptides by a combination of 1 H NMR, isothermal titration calorimetry, indicator displacement assays, and molecular dynamics simulations. We find that P6MQ is a potent receptor for N -methylated amino acid side chains. P6MQ recognized the H3K4Me 3 peptide with K d = 16 nM in phosphate buffered saline. 
    more » « less